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Abstract— This paper focuses on the approximate evaluation of Cauchy-type oscillatory singular integrals of the form 

∫
𝑳

𝒆𝒊𝒘𝒛

𝒛 − 𝝉
𝝓(𝒛)𝒅𝒛; 𝒘 ∈ ℝ, |𝒘| > 𝟏; 

 where L is a directed line segment in the complex plane ℂ joining from 𝝉 − 𝒍 to 𝝉 + 𝒍; 𝝉 ∈ ℂ is fixed. A Gauss-type quadrature rule is 

proposed for the approximate evaluation of line integrals ∫𝑳
𝝓(𝒛)𝒅𝒛. Furthermore, a comprehensive scheme is developed for evaluating 

the Cauchy-type integrals, with error bounds established and validated through numerical experiments on various reference integrals.  

 

Index Terms: analytic function; Cauchy principal value; oscillatory integral; line integral; error bound. 

 

I. LITERATURE REVIEW 

The Cauchy-type oscillatory integral 

∫
𝐿

𝑒𝑖𝑤𝑧

𝑧−𝜏
𝜙(𝑧)𝑑𝑧; 𝑤 ∈ ℂ; |𝑤| > 1                                               (1)  

 where 𝜙(𝑧) is an analytic function on Ω = {𝑧 ∈ ℂ: |𝑧| −
𝜏 < 𝜌 = 𝑟|𝑙|; 𝑟 > 1}; and L is the line segment join ing from 

the point 𝜏 − 𝑙  to 𝜏 + 𝑙  in the complex p lane; has been 

attracted many mathemat icians in pas t and present also. 

Recently Hota, Saha, Mohanty and Ojha [10] and in the 

recent past Wang and Xiang [21], Okacha [18] and 

Capobianco and Crisculo [3] have dealt with its real 

counterpart. In short Hota, Saha, Mohanty and Ojha [10] 

have framed a numerical scheme with the help of the 

quadrature rule meant for the numerical computation of 

integrals of Cauchy type 

∫
1

−1

𝜙 (𝑥)

𝑥
𝑑𝑥                                                                    (2) 

Hence after they have constructed quasi-exact quadrature 

for  

∫
1

−1

cos𝑤𝑥

𝑥
𝜙(𝑥)𝑑𝑥; 𝑤 ∈ ℝ; |𝑤 | > 1.                                    (3) 

and achieved accuracy up to appreciate precession. 

Assuming 𝜙 as analytic almost everywhere on ℂ, Wang and 

Xiang [21] have transformed the integral  

∫
1

−1

𝑒𝑖𝑤𝑥

𝑥−𝜏
𝜙(𝑥)𝑑𝑥;                                                           (4) 

into two integrals on [0, ∞),  decay exponentially faster 

and applied standard Gauss Laguerre quadrature rule for the 

efficient evaluation  of the integral. Okacha [18] used Hermite 

interpolation in order to evaluate the integral (1) by 

integrating the integrand using integration by parts. Whereas 

Capobianco and Crisculo [3] derived interpolatory 

quadrature rule with terms of orthogonal polynomials with 

respect to the Jacobi weight for the approximation of integral 

(1).  

 In this paper we are mainly concerned with approximate 

evaluation of integral (1). For this at first, we formulate a 

numerical scheme to approximate the integral  

∫
𝐿

𝑔 (𝑧)

𝑧 −𝜏
𝑑𝑧;                                                                        (5) 

 where 𝑔 is analytic in the complex p lane ℂ . Later, the 

proposed scheme with applicable modification is employed 

for the evaluation of the integral  

∫
𝐿

𝑒𝑖𝑤𝑧

𝑧 − 𝜏
𝜙(𝑧)𝑑𝑧; 𝑤 ∈ ℝ; |𝑤 | > 1. 

II. FORMULATION OF QUADRATURE SCHEME 

Subtracting out the singularity at 𝑧 = 𝜏  integral (1) 

reduces to 

𝐼 = ∫
𝜏 +𝑙

𝜏 −𝑙

𝑒𝑖𝑤𝑧
𝜙(𝑧)

𝑧 − 𝜏
𝑑𝑧 

= ∫
𝜏 +𝑙

𝜏 −𝑙

(𝑒𝑖𝑤𝑧 − 𝑒𝑖𝑤𝜏 )
𝜙(𝑧)

𝑧 − 𝜏
𝑑𝑧 + 𝑒𝑖𝑤𝜏 ∫

𝜏+𝑙

𝜏−𝑙

𝜙(𝑧)

𝑧 − 𝜏
𝑑𝑧 

= 𝐼0 + 𝑒𝑖𝑤𝜏 ∫
𝜏+𝑙

𝜏−𝑙

𝜙(𝑧) − 𝜙(𝜏)

𝑧 − 𝜏
𝑑𝑧 + 𝑒𝑖𝑤𝜏 𝜙(𝜏) ∫

𝜏 +𝑙

𝜏 −𝑙

1

𝑧 − 𝜏
𝑑𝑧 

= 𝐼0 + 𝑒𝑖𝑤𝜏 ∫
𝜏+𝑙

𝜏−𝑙

𝜙(𝑧)−𝜙(𝜏)

𝑧−𝜏
𝑑𝑧;                                        (6) 

 since the Cauchy Principal value of the rightmost above 

integral with the transformation  

𝑧 = 𝜏 + 𝑙𝑡;  −1 ≤ 𝑡 ≤ 1 (6) 

i.e.  

∫
1

−1

𝑑𝑡

𝑡
 

𝑖 [ 𝑙𝑖𝑚
𝜖→0−

∫
𝜖

−1

𝑑𝑡

𝑡
+ 𝑙𝑖𝑚

𝜖→0+
∫

1

𝜖

𝑑𝑡

𝑡
] = 0                                      (7) 

 As a result, we define our integral  

𝐼 = 𝐼0 + 𝐼𝐿 ; (8) 

where  

𝐼𝐿 = ∫
𝜏+𝑙

𝜏−𝑙 𝑔(𝑧) 𝑑𝑧;                                                           (8) 
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𝑔(𝑧) =
𝜙(𝑧)−𝜙(𝜏)

𝑧−𝜏
.                                                             (9)   

Since the singularity at 𝑧 = 𝜏,  has been subtracted out 

from 𝑔(𝑧) , so we construct the proposed Gauss -type 

quadrature rule for the efficient evaluation of the integral (7) 

as below. Further by transforming to the real like with the 

transformation 𝑧 = 𝜏 + 𝑙𝑡, −1 ≤ 𝑡 ≤ 1 , our above result 

reduces to  

𝐼 = 𝑒𝑖𝑤𝜏 ∫
1

−1

𝑒𝑖ℎ𝑡𝑔(𝜏 + 𝑙𝑡)𝑑𝑡 + 

𝑖𝜙(𝜏) ∫
1

−1

sin𝑤(𝜏+𝑙𝑡)

𝑡
𝑑𝑡                                              (10) 

It is seen that the Brikhoof - Young [2] quadrature rule  

𝑅𝐵𝑌 (𝜙) =
ℎ

15
[24𝜙(𝜏) + 4{𝜙(𝜏 + 𝑙) + 𝜙(𝜏 − 𝑙)} −

{𝜙(𝜏 + 𝑖ℎ) + 𝜙(𝜏 − 𝑖ℎ)}]                                            (11) 

meant for the approximation of  

∫
𝐿 𝜙(𝑧)𝑑𝑧;                                                               (12) 

has been modified by many mathematicians researching 

this field. Each of these rules is the parametric rule with 

parameter 𝛼, 𝛽  (in some cases two parametric) where values 

of these parameters are seen as the fourth root of a real 

number 𝑥 ∈ (0,1). Further, each  of these rules uses 𝑧 = 0 as 

a quadrature node. Keeping these facts in mind, we construct 

an n-point quadrature formula  

𝑅𝑛 (𝜙)  ≃ ∫
𝐿 𝑔(𝑧)𝑑𝑧                                                  (13) 

where quadrature nodes are the roots of the polynomial  

𝑃𝑛
(𝑧) = (𝑧 − 𝑘) ∏𝑛

𝑘=1
(𝑧4 − 𝑥𝑘

);   𝑥𝑘  ∈ (0,1)        (14)  

 i.e. in symbol  

𝑅𝑛
(𝑔) = ∑

𝑘−1

𝑖 =0

𝑤𝑖𝑔
(𝑖) (0) 

+ ∑

Υ

𝑗=1

[𝜆𝑗{𝑔(𝜏 + 𝛼𝑗ℎ) + 𝑔(𝜏 − 𝛼𝑗ℎ)} 

+𝜂𝑗 {𝑔(𝜏 + 𝑖𝛼𝑗ℎ) + 𝑔(𝜏 − 𝛼𝑗 ℎ)}]                               (15) 

where Υ = ⌊
𝑛

4
⌋  and 𝜆 𝑘 = 𝑛 − 4⌊

𝑛

4
⌋.  To be honest we 

formulate the rule 𝑅𝑛(𝑔) type for 𝑛 = Υ, Υ + 1,Υ + 2, Υ +
3. In fact, it is found that for 𝑤1 = 0 the rule 𝑅𝑛(𝑔) = 𝐼(𝑔); 

for 𝑔(𝑧) = 𝑧. This suffices 𝑅Υ+1(𝑔)  is identically equal to 

𝑅Υ+2(𝑔). At this stage, we prove the polynomial defined in 

equation (10) is orthogonal over L and the existence of such 

quadrature 𝑅𝑛(𝑔) of the maximum degree of exactness 6Υ +

𝜇 where  

𝜇 = {
𝜁 − 1 𝑓𝑜𝑟  𝜁 = 0,2

𝜁 𝑓𝑜𝑟  𝜁 = 1,3.
 

Theorem 2.1  Suppose the moments 𝑚𝑘 = ∫
1

−1 𝑧𝑘    exists;  

for 𝑘 ≥ 0, . Then for any 𝑛 ∈ ℕ  there exists a unique 

interpolatory quadrature 𝑅𝑛(𝑔) with a maximul degree of 

exactness 𝑑𝑚𝑎𝑥 = 6𝛶 + 𝜇, where  

Υ = ⌊
𝑛

4
⌋, 𝜆 𝑘 = 𝑛 − 4⌊

𝑛

4
⌋, 𝜇 = {

𝑘 − 1 𝑓𝑜𝑟  𝑘 = 0,2

𝑘 𝑓𝑜𝑟  𝑘 = 1,3
  (16) 

 The node polynomial (2.11) is characterized by the 

following orthogonality relations  

∫
1

0 𝑡𝑘 𝑃𝑛(𝑡2)𝑡𝜇 /2𝑤 (√𝑡)𝑑𝑡 = 0                                             (17) 

  

Proof.  Let 𝜙 ∈ 𝑃𝑑 , where 𝑑 ≥ 𝑛 = 4Υ + 𝑘, with Υ = ⌊
𝑛

4
⌋  

and 𝑘 = 𝑛 − 4Υ . 

Then, 𝜙 can be expressed as  

𝜙(𝑧) = 𝑢(𝑧)𝑤𝑛(𝑧) + 𝑣(𝑧) = 𝑢(𝑧)𝑧𝑘𝑝𝑛 (𝑧4) + 𝑣(𝑧), 𝑢 ∈
𝑃𝑑 −𝑛 , 𝑣 ∈ 𝑃𝑛1

,                                                                 (18) 

 from which, by an integration with respect to the weight 

function 𝑤, we get  

𝐼(𝜙) = ∫
1

−1 𝑢(𝑧)𝑧𝑘 𝑝Υ (𝑧4)𝑤(𝑧)𝑑𝑧 + 𝐼(𝑣).                 (19) 

 Since the quadrature is interpolatory and  

𝑣(𝑧) = 𝜙(𝑧) at the zeros of 𝑤𝑛 , we have  

𝐼(𝑣) = 𝑄𝑛(𝑣) = 𝑄𝑛(𝜙).  
Thus the quadrature formula 𝑄𝑛(𝜙) has a maximal degree 

of precision if and only if  

∫
1

−1 𝑢(𝑧) 𝑧𝑘 𝑝Υ
(𝑧4)𝑤(𝑧)𝑑𝑧 = 0.                                     (20) 

 for a maximal degree of the polynomial 𝑢 ∈ 𝑃𝑑𝑛
. 

According to the values of 𝑘, this orthogonality condition can 

be represented in the form  

∫
1

−1 ℎ(𝑧2)𝑧𝜇+1𝑝𝑛 (𝑧4)𝑤(𝑧)𝑑𝑧 = 0, ℎ ∈ 𝑃𝑁 −1             (21) 

 which means that the maximal degree of the polynomial 

𝑢 ∈ 𝑃𝑑𝑛
 is  

𝑑𝑚𝑎𝑥 − 𝑛 = {
2Υ − 1 𝑓𝑜𝑟   𝑘  𝑖𝑠  𝑒𝑣𝑒𝑛 ,

2Υ 𝑓𝑜𝑟   𝑘  𝑖𝑠  𝑜𝑑𝑑,
                     (22) 

i.e., 𝑑𝑚𝑎𝑥 = 6Υ + 𝜇, where 𝜇 is defined by (16). 

Finally by substituting 𝑧2 = 𝑡, the orthogonality condition 

we get  

∫
1

0

𝑡𝑘𝑃𝑛 (𝑡2)𝑡𝜇/2𝑤(√𝑡)𝑑𝑡 = 0 

Theorem 2.2  A unique interpolatory quadrature 𝑅𝑛(𝑔), 

with a maximum degree of exactness 𝑑𝑚𝑎𝑥 = 6𝑁 + 𝜇, exists 

if and only if the polynomial 𝑃𝑛(𝑡) is orthogonal, with respect 

to the weights 𝑤𝑗 (𝑡) = 𝑡(𝜈+2𝑗)/3𝑡1/4   with   𝑁𝑗 = 1 + [
𝑛−𝑗

2
],   

j=1, 2  

Proof.  From the theorem (2.1), the condition (2.18) may  

also be written as 

∫
1

0

𝑧𝑘 𝑝𝑛
(𝑧)𝑧

𝜈−1
4 𝑤 (𝑧

1
4) 𝑑𝑧 = 0,   

 𝑘 = 0,1, … , 𝑛 − 1.                                                      (23) 

 Now, putting  

𝑘 = 2𝑟 + 𝑗 − 1, 𝑟 = ⌊
𝑘

2
⌋ 

we get,  

∫
1

0

𝑧𝑟 𝑝𝑛(𝑧)𝑤𝑗 (𝑧)𝑑𝑧 = 0, 

  𝑟 = 0,1, … , 𝑛𝑗 − 1  (𝑗 = 1,2)                                    (24) 

 where  

𝑤𝑗
(𝑧) = 𝑧

𝜈+2𝑗

4
−1

𝑤 (𝑧
1

4 )  𝑎𝑛𝑑 𝑛𝑗 = 1 + ⌊
𝑛−𝑗

2
⌋.             (25) 

 Each of the weight functions is defined on (0, 1) and we 
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are getting a relation among these weight functions.  

𝑤𝑗 (𝑧) = 𝑧(𝑗−1)/2𝑤1(𝑧), 𝑗 = 1,2; 

where  

𝑤1(𝑧) = 𝑧(𝜈+2)/4−1. 

 Again  

𝑧𝑘+(𝑗−1)/2, 𝑘 = 0,1, … , 𝑛𝑗 − 1;   𝑗 = 1,2; 

 is a Chebyshev system on (0, ∞), and hence on (0,1), and 

𝑤1(𝑧) > 0  on E. Therefore, {𝑤𝑗, 𝑗 = 1,2}  is a complete 

system, in which all weight functions are supported on the 

same interval. Hence, orthogonal polynomial 𝑝𝑛 (𝑧)  has 

exactly 𝑛 zeros in (0,1).  

To formulate the quadrature rule we calculate the principal 

part  

∏𝑛
𝑘=1

(𝑧4 − 𝑥𝑘
);                                                          (26) 

 of our polynomial 𝑃𝑛 (𝑧) by   

𝑃𝑛 (𝑥) = ∑𝑛
𝑗=0 (−1)𝑗 𝑎𝑗𝑥2(𝑛−𝑗)                                    (27) 

where 

 𝑎0 = 1 

 𝑎1 = 𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥𝑛 

 𝑎𝑛 = 𝑥1𝑥2 … 𝑥𝑛 

 i.e. in general  

𝑎𝑗 = ∑ 𝑥𝜃1
𝑥𝜃2

𝑥𝜃3
… 𝑥𝜃𝑘

;   𝑗 = 1,2,3, … , 𝑛;                   (28) 

and the summation is taken on all possible combinations of 

(𝜃1, 𝜃2 , 𝜃3 , … , 𝜃𝑗 ) 

Further, the above orthogonality condition reduces to  

∫
1

0

𝑡𝜈𝑃𝑛(𝑡2)𝑡𝜇 /2𝑑𝑡 = 0; 𝜈 = 0,1,2, … , (𝑛 − 1); 

 which directly implies  

∑

𝑛

𝑗=0

(−1)𝑗𝑎𝑗 ∫
1

0

𝑡
𝜈+2(𝑛−𝑗) +

𝜇
2 𝑑𝑡 = 0; 

𝜈 = 0,1,2, … , (𝑛 − 1).                                                  (29)  

A. The Proposed Quasi-Exact Method 

To construct the method we assume here that the function 

𝜙(𝑧)  is continuous and infinitely  differentiable in  the 

complex p lane ℂ. Now with this assumption expanding 𝜙(𝑧) 

by using Taylor’s expansion about the singular point 𝑧 = 𝜏 

we get  

𝜙(𝑧) = ∑

∞

𝑘=0

𝑐𝑘(𝑧 − 𝜏)𝑘  

where 𝑐𝑘 =
𝜙(𝑘)(𝜏)

𝑘 !
 are the Tay lor’s coefficients. 

Truncating the above series after the first (𝑛 + 1) terms the 

interpolating polynomial 𝑔𝑛(𝑥)  with the interpolating  

condition  

𝑔𝑛
(𝑖)

(𝑧) = 𝜙 (𝑖) (𝑧); ∀𝑖 = 0(1)𝑛; 
is obtained as  

𝑔𝑛(𝑧) = 𝜙(𝜏) + ∑

𝑛

𝑘=1

𝜙 (𝑘) (𝜏)

𝑘!
(𝑧 − 𝜏)𝑘  

Applying the standard process it can be shown that the 

truncation error 𝐸̃𝑛(𝜙) associated with the polynomial 𝑔𝑛(𝑧) 

is  

𝐸̃𝑛(𝜙) =
(𝑧 − 𝜏)𝑛+1

(𝑛 + 1)!
𝜙 (𝑛+1) (𝜉); 

for 𝜉 ∈ [𝜏 − 𝑙, 𝜏 + 𝑙]. Now as  

𝜙(𝑧) ≃ 𝑔𝑛(𝑧); 
thus,  

𝐽𝑜(𝜙) =  ∫
𝜏+𝑙

𝜏 −𝑙

(𝑒𝑖𝜔𝑧 − 𝑒𝑖𝜔𝜏 )
𝜙(𝑧)

𝑧 − 𝜏
𝑑𝑧 

≃ ∫
𝜏 +𝑙

𝜏 −𝑙

(𝑒𝑖𝜔𝑧 − 𝑒𝑖𝜔𝜏 )
𝑔𝑛 (𝑧)

𝑧 − 𝜏
𝑑𝑧 

=  𝜙(𝜏) ∫
𝜏 +𝑙

𝜏 −𝑙

𝑒𝑖𝜔𝑧 − 𝑒𝑖𝜔𝜏

𝑧 − 𝜏
𝑑𝑧 

∑
𝜙 (𝑘) (𝜏)

𝑘 !
∫

𝜏+𝑙

𝜏−𝑙

(𝑧 − 𝜏)𝑘−1(𝑒𝑖𝜔𝑧 − 𝑒𝑖𝜔𝜏 )𝑑𝑧

∞

𝑘=1

 

=  𝜙(𝜏)(𝐽𝑐 + 𝑖𝐽𝑠) + ∑𝑛
𝑘=1

𝜙(𝑘)(𝜏)

𝑘 !
(𝛿𝑘−1 − 𝛾𝑘 −1);          (30)  

where  

𝐽𝑐 = ∫
𝜏 +𝑙

𝜏 −𝑙

𝑐𝑜𝑠𝜔𝑧

𝑧 − 𝜏
𝑑𝑧 = −2 𝑠𝑖𝑛    (𝜔𝜏) 𝑆𝑖   (𝜔𝑙), 

𝐽𝑠 = ∫
𝜏 +𝑙

𝜏 −𝑙

𝑠𝑖𝑛𝜔𝑧

𝑧 − 𝜏
𝑑𝑧 = 2 𝑐𝑜𝑠   (𝜔𝜏) 𝑆𝑖   (𝜔𝑙) 

𝛿𝑘−1 = ∫
𝜏 +𝑙

𝜏 −𝑙

(𝑧 − 𝜏)𝑘−1(𝑒𝑖𝜔𝑧 )𝑑𝑧, 

𝛾𝑘−1 = ∫
𝜏 +𝑙

𝜏 −𝑙

𝑒𝑖𝜔𝜏 (𝑧 − 𝜏)𝑘−1𝑑𝑧 =
𝑒𝑖𝜔𝜏 𝑙𝑘

𝑘
(1 − (−1)𝑘 ) 

Theorem 2.3 If 𝛿𝑘−1 = ∫
𝜏+𝑙

𝜏−𝑙 (𝑧 − 𝜏)𝑘−1(𝑒𝑖𝜔𝑧 )𝑑𝑧  and 

𝛿𝑖 = 0; for 𝑖 ∈ ℤ, 𝑖 < 0; then  

𝑖𝜔 𝛿𝑘−1 + (𝑘 − 1)𝛿𝑘−2 = 𝑙𝑘−1𝑒𝑖𝜔𝜏 [𝑒𝑖𝜔𝑙 −

(−1)𝑘−1𝑒−𝑖𝜔𝑙 ];                                                               (31) 

the non-lomogeneous linear recurrence relat ion holds 

∀𝑘 = 1(1)𝑛.  
Proof.  Let  

𝛿𝑘−1 = ∫
𝜏 +𝑙

𝜏 −𝑙

(𝑧 − 𝜏)𝑘−1(𝑒𝑖𝜔𝑧 )𝑑𝑧. 

By following the method of integration by parts, we have  

𝛿𝑘−1 = [(𝑧 − 𝜏)𝑘−1
𝑒𝑖𝜔𝑧

𝑖𝜔
]

𝜏−𝑙

𝜏+𝑙

 

−
𝑘 − 1

𝑖𝜔
∫

𝜏 +𝑙

𝜏 −𝑙

(𝑧 − 𝜏)𝑘−2(𝑒𝑖𝜔𝑧 )𝑑𝑧 

=
𝑙𝑘−1𝑒𝑖𝜔𝜏

𝑖𝜔
[𝑒𝑖𝜔𝑙 − (−1)𝑘−1𝑒−𝑖𝜔𝑙 ] −

𝑘 − 1

𝑖𝜔
𝛿𝑘−2 

 

𝑖𝜔𝛿𝑘−1 + (𝑘 − 1)𝛿𝑘−2 = 𝑙𝑘−1𝑒𝑖𝜔𝜏 [𝑒𝑖𝜔𝑙 − (−1)𝑘−1𝑒 −𝑖𝜔𝑙] 

which complete the prove.  

 

However, the recurrence relation g iven in equation (31) 

can be rewritten as  

𝛿𝑘 + 𝐵(𝑘 − 1)𝛿𝑘−1 = 𝑙𝑘𝐴𝐵𝐶, 𝑘 = 0,1,2, .. 
where  
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𝐴 = 𝑒𝑖𝜔𝜏 , 𝐵 =
1

𝑖𝜔
, 

𝐶 = 𝑒𝑖𝜔𝑙 − (−1)𝑘−1𝑒−𝑖𝜔𝑙 

On solving by following standard method of solution of 

recurrence relation we obtain its particular solution as  

𝛿𝑘 = 𝐴 ∑𝑘−1
𝑖=1 (−1)𝑖 𝑘!

(𝑘−𝑖)!
(𝑒𝑖𝜔𝑙 −

(−1)𝑘−𝑖𝑒 −𝑖𝜔𝑙) 𝐵 𝑖+1𝑙𝑘−𝑖 + 𝑘! (−𝐵)𝑘𝛿0                        (32) 

with 𝛿0 =
2

𝜔
𝑒𝑖𝜔𝜏    𝑠𝑖𝑛 𝑤ℎ 

B. Error analysis 

Let us assume that the function 𝜙(𝑥) is differentiab le a  

sufficient number of times in  [𝜏 − 𝑙, 𝜏 + 𝑙]. Now with this  

assumption denoting 𝐸𝐽 (𝜙) as the error associated with the 

scheme 𝑆(𝜙)  meant for the numerical integration of the 

Cauchy type oscillatory integral 𝐽0(𝜙) as given in equation 

(2.32) is obtained as 

|𝐸𝐽 (𝜙)| ≤ |𝐽𝑜
(𝜙) − 𝑅𝑜

(𝜙)| + 𝑒𝑖𝜔𝜏 |𝐼(𝜙) −

𝑇𝑛(𝜙)| |𝐸𝑜 (𝜙)| + |𝐸𝐼 (𝜙)|;                                           (33) 

where  

𝐸𝑜 (𝜙) = 𝐽𝑜(𝜙) − 𝑅𝑜 (𝜙); 
and  

𝐸𝐼 (𝜙) = 𝑒𝑖𝜔𝜏 |𝐼(𝜙) − 𝑇𝑛(𝜙)|; 
are the error terms associated with the quadrature rules  

𝑅𝑜 (𝜙) and 𝑇𝑛(𝜙) meant for the approximate evaluation of 

the Filon type oscillatory integral 𝐽𝑜(𝜙) and CPV integral 

𝐼(𝜙) respectively. However,  

|𝐸𝑜 (𝜙)|  ≤ 

𝑀𝑛 +1

(𝑛 + 1)!
|∫

𝜏 +𝑙

𝜏 −𝑙

(𝑧 − 𝜏)𝑛+1(𝑒𝑖𝜔𝑧 − 𝑒𝑖𝜔𝜏 )𝑑𝑧| 

≤
𝑀𝑛 +1

(𝑛+1)!
[|∫

𝜏+𝑙

𝜏−𝑙 (𝑧 − 𝜏)𝑛+1𝑒𝑖𝜔𝑧 𝑑𝑧| + 2
|𝑙|𝑛+2

𝑛+2
]             (34) 

where 𝑀𝑛 +1 = 𝑀𝑎𝑥
𝜉 ∈𝐿

|𝜙 (𝑛+1) (𝜉)|. Further,  

|∫
𝜏+𝑙

𝜏−𝑙

(𝑧 − 𝜏)𝑛+1𝑒𝑖𝜔𝑧 𝑑𝑧| 

=
1

|𝜔|
[2|𝑙|𝑛+1 + (𝑛 + 1) |

      

∫
𝜏+𝑙

𝜏−𝑙
(𝑧 − 𝜏)𝑛𝑒𝑖𝑧 𝑑𝑧|] 

≤
|𝑙|𝑛+1

|𝜔|
[2 + (𝑛 + 1) ∫

1

−1

|𝑡|𝑛𝑑𝑡] ; 

𝑧 = 𝜏 + 𝑙𝑡; −1 ≤ 𝑡 ≤ 1;

= 4
|𝑙|𝑛 +1

|𝜔|

 

 As a result,  

|𝐸𝑜 (𝜙)| ≤
2|𝑙|𝑛+1𝑀𝑛 +1

(𝑛 + 1)!
[

2

|𝜔|
+

|𝑙|

𝑛 + 2
]. 

Since, from equation(2.35) it is evident that  

|𝐸𝐼 (𝜙)| ≤
2|𝑙|11 𝐶𝑀11

(11)!
; 0 < 𝐶 < 1; 

thus,  

|𝐸𝐽 (𝜙)| ≤
2|𝑙|11𝑀11

(11)!
[𝐶 +

2

|𝜔|
+

|𝑙|

12
] ;                             (35) 

for 𝑛 = 10. That is, if we truncate the Taylor’s series after 

the first eleven terms then the scheme will p rovide at least 10 

decimal places of accuracy for an  integral of the type(1.1). 

This fact is vividly seen when the proposed scheme is applied 

for the evaluation of such types of integrals numerically.  

III. NUMERICAL EXPERIMENTS 

To test the accuracy of the quadrature ru le costructed in the 

section 2, we have numerically integrated the following 

integrals by this rule.  

ℐ1 = 𝑃 ∫
𝑖

−𝑖

𝑒𝑧

𝑧
𝑑𝑧, 

ℐ2 = 𝑃 ∫
𝑖

−𝑖

(1 + 𝑧)𝑒𝑧

𝑧
𝑑𝑧 

ℐ3 = 𝑃 ∫
𝑖

−𝑖

(1 + 𝑧𝑐𝑜𝑠𝑧 )

𝑧
𝑑𝑧, 

ℐ4 = 𝑃 ∫
(−1+𝑖)/4

(1−𝑖)/4

𝑡𝑎𝑛−1𝑧

𝑧
𝑑𝑧 

ℐ5 = 𝑃 ∫
3(1+𝑖)/2

(1+𝑖)/2

𝑠𝑖𝑛𝑧

𝑧 − (1 + 𝑖)
𝑑𝑧 

ℐ6 = ∫
−𝑖

𝑖

𝑒𝑧 𝑑𝑧 

ℐ7 = ∫
𝑖 /2

−𝑖/2

𝑐𝑜𝑠𝑧𝑑𝑧 

ℐ8 = ∫ 𝑧𝑒𝑧 𝑑𝑧

(1+𝑖)/√2

−(1+𝑖)/√2

 

Table 1: Numerical evaluation of complex Principal value integrals  

Integral Approx. Value of the integral Absolute Error 

ℐ1 1.892166140149260𝑖  5.8 × 10−10  

ℐ2 3.575108103339004𝑖  7.0 × 10−9 

ℐ3 2.350402393847402𝑖  6.6 × 10−9 

ℐ4 −0.506613649119302
+ 0.492764337999582𝑖 

2.2 × 10−8 

ℐ5 1.817558673960816
− 0.205725120904810𝑖 

1.7 × 10−11  
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Integral Approx. Value of the integral Absolute Error 

ℐ6 1.682941963189744𝑖  6.4 × 10−9 

ℐ7 1.042190610990673𝑖  3.2 × 10−12  

ℐ8 −0.516830611217106

+ 0.422612055568959𝑖 

6.5 × 10−8 

 

IV. CONCLUSION 

This study presents a numerical approach for evaluating  

Cauchy-type oscillatory integrals. It has been observed that 

for any value o f 𝑤, a  fixed  number of points can achieve 

consistent accuracy. Consequently, the proposed mixed  

approach, combining classical and non-classical quadrature 

techniques, proves effective for the numerical approximat ion 

of these integrals. 
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