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Abstract— This paper focuses on the approximate evaluation of Cauchy-type oscillatory singularintegrals of the form

wz

Z—T

fL e

P(2)dz;w € R, |w| > 1;

where L is a directed line segment in the complex plane C joining fromt —1to T + I; T € C isfixed. A Gauss-type quadrature rule is
proposed for the approximate evaluation of lineintegrals fL ¢(z)dz. Furthermore, a comprehensive scheme is developed for evaluating
the Cauchy-type integrals, with error bounds established and validated through numerical experiments on various reference integrals.

Index Terms: analytic function; Cauchy principal value; oscillatory integral; lineintegral; error bound.

I. LITERATURE REVIEW

The Cauchy-type oscillatory integral

fL%qb(z)dz;we(C; w| > 1 (1)

where ¢(z) is an analytic function on Q = {z € C: |z| —
T < p=r|l];r >1};and L s the line segment joining from
the point 7 — [l to 7 + [ in the complex plane; has been
attracted many mathematicians in past and present also.
Recently Hota, Saha, Mohanty and Ojha [10] and in the
recent past Wang and Xiang [21], Okacha [18] and
Capobianco and Crisculo [3] have dealt with its real
counterpart. In short Hota, Saha, Mchanty and Ojha [10]
have framed a numerical scheme with the help of the
quadrature rule meant for the numerical computation of
integrals of Cauchy type

1 ¢
L dx @
Hence after they have constructed quasi-exact quadrature
for
) S p()dx; w € R; [w| > 1. )

and achieved accuracy up to appreciate precession.

Assuming ¢ as analytic almost everywhere on C, Wang and
Xiang [21] have transformed the integral

— ¢()dx; C)
into two integrals on [0, o), decay exponentially faster
and applied standard Gauss Laguerre quadrature rule for the
efficient evaluation of the integral. Okacha [18] used Hermite
interpolation in order to evaluate the integral (1) by
integrating the integrand using integration by parts. Whereas
Capobianco and Crisculo [3] derived interpolatory
quadrature rule with terms of orthogonal polynomials with
respect to the Jacobi weight for the approximation of integral

Q).

1
-1

In this paper we are mainly concerned with approximate
evaluation of integral (1). For this at first, we formulate a
numerical scheme to approximate the integral

[, 22 dz; 5)

where g is analytic in the complex plane C. Later, the
proposed scheme with applicable modification is employed

for the evaluation of the integral
iwz
fL

e
Il. FORMULATION OF QUADRATURE SCHEME
Subtracting out the singularity at z = t integral (1)

dz;w € R; > 1.
—— ¢ @dzw € Ri w|

reduces to
T+l
) z
= [ 2,
1 o 2T +1
Tl . z . T z
T-1 zZ—T -1 Z—T
] T+l 7) — T ] T+l
=[y+ e f Mdz+ e"’”db(r)f dz
- zZ—T 1 Z—T
=1+ eiwr r‘[—+ll Mdz; (6)

VA
since the Cauchy Principal value of the rightmost above
integral with the transformation

z=14+I1t; -1 <t<1(6)

ie.
Ldt

. . € dt . ladt
[l 5+ i L] = 0 g
As a result, we define our integral
I =1,+1,;(8)
where

1
I, = f:rl 9@ dz; (8)
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Since the singularity at z = t, has been subtracted out
from g(z), so we construct the proposed Gauss-type
quadrature rule for the efficient evaluation of the integral (7)
as below. Further by transforming to the real like with the
transformation z=rt+4+10t, =1 <t <1, our above result
reduces to

1

I= eiWTf ettg(z +1)dt +
-1

1 sinw(‘r+lt)dt

ip(0) )2, = (10)
It is seen thatthe Brikhoof - Young [2] quadrature rule

Rpy () = 1’1—5 [24¢(0) + 4H{p (T + D) + d(r — D} —

{¢(@+ih) + ¢(r - ih)}] 1)
meant for the approximation of
J, $@dz (12)

has been modified by many mathematicians researching
this field. Each of these rules is the parametric rule with
parameter «, B (in some cases two parametric) where values
of these parameters are seen as the fourth root of a real
number x € (0,1). Further, each of these rules uses z = 0 as
a quadrature node. Keeping these facts in mind, we construct
an n-point quadrature formula

R, (@) =/, g(2)dz (13)

where quadrature nodes are the roots of the polynomial

P =0G-KI}, z*-x,); x, €(01) (14
i.e. in symbol
k-1
R(g) = ) wig? ©
. i=0
£ {g(r+ aph) + gz - )}

j=1

+1; {g(r + iajh) + g(‘r — a]-h)}] (15)

where Y = [fj and A, = n—4[§]. To be honest we
formulate the rule R,(g) type forn=Y, Y+ 1,Y +2,Y +
3. In fact, it is found that for w; = 0the rule R,,(g) = 1(9);
for g(z) = z. This suffices Ry, (g) is identically equal to

Ry,,(g). At this stage, we prove the polynomial defined in
equation (10) is orthogonal over L and the existence of such

quadrature R, (g) of the maximum degree of exactness 6Y +
{—1 for (=02

u where
{( for {=1,3.
Theorem 2.1 Suppose the moments m;, = f_ll z*©  exists;

for k> 0,. Then for any n € N there exists a unique
interpolatory quadrature R,,(g) with a maximul degree of
exactnessd,,,, = 6Y + p, where

k

_n . an _ k—1 for k=0,2
V=11 Ak=n 4[4J"u_{k for k=13 (16)

The node polynomial (2.11) is characterized by the
following orthogonality relations

Jy 8B, ()t 2w (Vo) dt = 0 (17)

Proof. Let ¢ € P, where d > n = 4Y + k, with Y = [fj
and k = n —4Y.

Then, ¢ can be expressed as

¢ (2) = u(@)w,(2) + v(2) = u(@)z"p, (z*) + v(2), u€
Py_n, VEP,, (18)

from which, by an integration with respect to the weight
function w, we get

1) = I, u@z*py @Hw(2)dz + 1 (v).

Since the quadrature is interpolatory and

v(z) = ¢ (z) at the zeros of w,, we have

1(17) = Qn(v) = Qn(d))

Thus the quadrature formula @,,(¢) has a maximal degree
of precision if and only if

f_ll u(@ z*p, (z)w(2)dz = 0. (20)

for a maximal degree of the polynomial u € P, .
According to the values of k, this orthogonality condition can
be represented in the form

L @)z p, 2w(2)dz = 0, h € Py, (21)

which means that the maximal degree of the polynomial

UEP, is
d _{ZY —1 for k is even,
max — = oy for k is odd,
i.e., dpar = 6Y + u, where u is defined by (16).
Finally by substituting z2 = t, the orthogonality condition
we get

(19)

(22)

1
J’ tkp, (t2)tH2w(VE)dt = 0
0

Theorem 2.2 A unique interpolatory quadrature R, (g),
with a maximum degree of exactness d,,,,, = 6N + p, exists
ifand only if the polynomial B, (t) isorthogonal, with respect

to the weightsw; (t) = t*20/3¢1/* with N; = 1+ [”?j],
1,2

Proof. From the theorem (2.1), the condition (2.18) may
also be written as

/

1
zZ4

v—1

z%p, @Dz + w )dz =0,

k=01,..,n—1. (23)
Now, putting
k

k=2r+j—-1r= lEJ

we get,
1

J- z"p,(2)w;(2)dz =0,

0
r=01..,n—-1(3G=12) (24)
where

v+2j 1 .

wi(@ =24+ 'w (24) andn; = 1+ lnz—JJ (25)

Each of the weight functions is defined on (0, 1) and we
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are getting a relation among these weight functions.

wi(2) = 200w, (2),  j =12
where
w,(2) = Z(v+2)/4-1.
Again
Zkt(-D/2 k=01..n-1 j=12;

is a Chebyshev systemon (0, =), and hence on (0,1), and
w;(z) >0 on E. Therefore, {w;, j = 1,2} is a complete
system, in which all weight functions are supported on the
same interval. Hence, orthogonal polynomial p, (z) has
exactly n zeros in (0,1).

To formulate the quadrature rule we calculate the principal
part

=1 (@ = xp); (26)
of our polynomial B, (z) by
B (x) = Z1y (-1) axD (27)
where
a, =1
a, =x1+x,+x3+-+x,
A, = XXy 0 Xp
i.e. in general
a; =X X9, Xg,Xg, Xg,; = 12,3,..,1; (28)

and the summation is taken on all possible combinations of
(6,,6,,05,...,6,)
Further, the above orthogonality condition reduces to

1
f tVB, (t)th/2dt = 0;v = 0,1,2, ..., (n — 1);
0

which directly implies

1

. _D48
E (_1)]ajf tv+2(n ])+2dt= 0;
j=0 S

v=012,.., (n-1).
A. The Proposed Quasi-Exact Method
To construct the method we assume here that the function
¢(z) is continuous and infinitely differentiable in the

complex plane C. Now with this assumption expanding ¢(z)

by using Taylor’s expansion about the singular point z =1
we get

(29)

{oe]

P =) -1
k=0
€]
=2 kl(r)
Truncating the above series after the first (n + 1) terms the
interpolating polynomial g, (x) with the interpolating
condition

where are the Taylor’s coefficients.

9. (2) = $O () vi = 0()m;
is obtained as
»® (1)

3@ =@+ ), —
k=1 ’

Applying the standard process it can be shown that the
truncation error E,, (¢) associated with the polynomial g,,(2)

(z - )

is
B (Z— .L.)n+1
E,(¢) = ———¢™(&);
(n+ D!
foré € [t — 1,7+ 1]. Now as
A ¢ (2) = gn(2);
thus,
fTH iwz iwt (f)(Z) d
@)= | (e —eny = dz
1
~ fr+ (eiwz _ eiwr)‘zn_(z‘zdz
T-1 -
1:+leia)z - ei(m’
= ¢) JT_I sz
(k) T T+l ) ]
¢ k|( ) (Z N T)k—l(elwz _ etwr)dz
k=1 N U
(€9)
= $@Uc+ i)+ Ty TP (B = Ve (30)
where
Ttleoswz ; '
Jc= f - dz = =2sin (wt) Si (wl),
-1
T+ sinwz
]S=f Z_sz=2cos (wt) Si (wl)
4 T+l
8pr =f (z — )k 1(e*?)dz,
T+l E iw‘rlk
Yk-1 =f e (z —1)f'dz = (1-(1"
-1 k

Theorem 2.3 If §,_, = f:_+ll

6; =0;fori € Z,i < 0; then
W8y + (k= 1)8)_, = [F 1T [gi®! —

z — 1) 1(e®?)dz and

(_1)k—1e—iwl]; (31)
the non-lomogeneous linear recurrence relation holds
Vk =1(1)n.
Proof. Let

T+l
81 =f (z — )k 1(e'?)dz.
-1

By following the method of integration by parts, we have

iwz T+l
Sir = |2 =115
lw I
k—l T+ )
_T l (Z_.L.)k—Z(ele)dZ
o
[leter iwl k=1 ,—iwl —
=T[€ - =D eT ] = o )2

W8, _y + (k — 1)8,_, = Ik 1el@T[eivl — (—1)k-1g-iwl]
which complete the prove.

However, the recurrence relation given in equation (31)
can be rewritten as
8 +B(k — 1)6,_, = I¥ABC,k =0,1,2,..
where

12
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A=clorp=—,

lw
C = eiwl _ (_1)k —La)l
On solving by following standard method of solution of
recurrence relation we obtain its particular solution as

6 = ATISE (1) (e -
(_1)k—ie—iwl) Bi+llk L+ k'(—B)k60
with 8, = iei“” sin wh

(32)

B. Error analysis

Let us assume that the function ¢(x) is differentiable a
sufficient number of times in [t — [, 7+ []. Now with this
assumption denoting E; (¢) as the error associated with the
scheme S(¢) meant for the numerical integration of the
Cauchy type oscillatory integral /,(¢) as given in equation
(2.32) is obtained as

1B} (@) < /o(@) — R, (P)] + &7 [1(¢) —

T, (@) |E, (@) + |E (D); (33)
where
E, (@) =J,(¢) —R,(¢);
and

Ei(¢) = e" |I(P) — T, (®);
are the error terms associated with the quadrature rules
R, (¢) and T,,(¢) meant for the approximate evaluation of
the Filon type oscillatory integral J,(¢) and CPV integral
I(¢) respectively. However,

|E, (P)] <
T+1 ) )
(n " 1)' f (Z _ .L.)n+1(elwz _ elwr)dz

l
< |7 @ - et az] + 28]
where M, , = AgIng | D (&)]. Further,

M‘rl+1

(34)

T+l
f (Z _.[)n+1elwzdz
-1

|

1 n+1 T i
|w| lel +(n+1) J’ (Z—T)neLZdZ
-1

| |n+1

<
lw]

1
[2 +(n+ 1)f |t|“dt];
-1

z=1+Ilt;-1<t<1;

|l|n+1
ol
As a result,
2| M, 2 l
£y < 21 [_ IR}
n+1) lwl n+2
Since, from equation(2.35) it is evident that
2| CMy,
|E; (@) < W;O <C<TL
thus,
2|l| "My 2 |l|
15 @)l < ot [o 4 = (35)

for n = 10. That is, if we truncate the Taylor’s series after
the first eleven terms then the scheme will provide at least 10
decimal places of accuracy for an integral of the type(1.1).
This fact is vividly seen when the proposed scheme is applied
for the evaluation of such types of integrals numerically.

1. NUMERICAL EXPERIMENTS

Totestthe accuracy ofthe quadrature ru le costructed in the
section 2, we have numerically integrated the following
integrals by this rule.

z

Le
71=Pf —dz,
._iZ
Y1+ 2)e*

Jy =P

-r
1-0/4

3(1+i)/2 sinz
7 = Pf —
sz Z2—@A+10)

i
T =f e’dz
fz/_zl

coszdz
—i/2
(1+i)/V2

’

L
(1 + zcosz
f ( )d

(—1+)/4 tan—lz

dz
z

dz

Iz

Ig ze’dz

—(1+)N2Z

Table 1: Numerical evaluation of complex Principal value integrals

Integral Approx. Value of the integral Absolute Error
7, 1.892166140149260i 5.8 x 10710
1, 3.575108103339004i 7.0x107°
A 2.350402393847402i 6.6 x107°
I, —0.506613649119302 2.2%x1078

+ 0.492764337999582i
N 1.817558673960816 1.7 x 10711
— 0.205725120904810i
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Integral Approx. Value of the integral Absolute Error
Te 1.682941963189744i 6.4%x107°
7, 1.04219061099067 3i 3.2x 1072
Ig —0.516830611217106 6.5% 1078
+ 0.422612055568959i

IV. CONCLUSION

This study presents a numerical approach for evaluating
Cauchy-type oscillatory integrals. It has been observed that
for any value of w, a fixed number of points can achieve
consistent accuracy. Consequently, the proposed mixed
approach, combining classical and non-classical quadrature
techniques, proves effective for the numerical approximation
of these integrals.

REFERENCES

(1]
(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Atkinson and Kendall, An Introduction to Numerical
Analysis, John Wiley and sons, 2nd edition, (1978).

G. Brikhoff, D. M. Young, Numerical quadrature of analytical
and harmonic functions, Journal of Mathematical Physics,
29(1950), 217-221.

M. R. Capobianco and G Crisculo, On quadrature for Cauchy
principal value integrals of oscillatory functions, Journal of
Computational and Applied Mathematics, 156(2003),
471-486.

M. M. Chawla and N. Jayrajan, Quadrature formulas for
Cauchy principal value integrals, Computing, 15(1975),
347-355.

K. Chung, G. A. Evans, J. R. Webster, A method to generate
generalized quadrature rules for oscillatory integrals, Appl.
Numer. Math.,34(2000),85-93.

P. J. Davis, Interpolation and Approximation,
(Blaisdell), Boston, Massachusetts, pp.-178(1963).

P. J. Davis and P. Rabinowitz, Methods of Numerical
Integration, Second Edition, Academic Press, INC., New
York, (1984).

Elliot and Paget, Gauss type quadrature rules for Cauchy
principal value integrals, Mathematics of Computation,
33(1979),301-309.

G. He, S. Xiang, An improved algorithm for the evaluation of
Cauchy principal value integrals of oscillatory functions and
its application Numer., 15(1975), 347-355.

M. K. Hota, A. K. Saha, P. Ojha, P. K. Mohanty, On the
approximate evaluation of oscillatory-singular integrals
Cogent Mathematics

D. B. Hunter, Some Gauss type formulas for the evaluation of
Cauchy principal value of integrals, Numerical Mathematics,
19(1972), 419-424.

D. Huybreches, S. Vandewalle, On the evaluation of highly
oscillatory integrals by analytic continuation, SIAM. J.
Numer. Anal., 44(2006), 1026-1048.

P. Keller, A practical algorithm for computing Cauchy
principal value integrals of oscillatory functions, Appl. Math.
Comput., 218(2012), 4988-5001.

P. Keller, 1. Wrobel, computing Cauchy principal value
integrals using a standard adaptive quadrature, Journal of

Ginn

[15]

[16]

[17]

[18]
[19]

[20]

[21]

Computational and Applied M athematics,

V. L. Lebedev and O. V. Baburin, Calculation of the principal
values, weights and nodes of the Gauss quadrature formula of
integrals, U.S.S.R. Comput. Math. and Math. Phy., 5(1965),
81-92.

G. V. Milovanovic, Numerical computation of integrals
involving oscillatory and singular kernels and some
applications od quadratures, Computational M athematics and
Applications, 36(1998),19-39.

G. Monegato, The numerical evaluation of one-dimensional
Cauchy principal value integrals Computing, 29(1982),
337-354.

G. E. Okecha, Quadrature formula for Cauchy principal value
integrals of oscillatory kind Math. Comp., 49(1987),259-268.
R. Piessens, Numerical Evaluation of Cauchy principal values
of integrals, BIT, 10(1970)

J. F. Price, Discussion of quadrature formulas for use on
digital computers, Rep.D1-82-0052, Boeing Sci. Res. Labs,
(1960).

H Wang, S. Xiang, On the evaluation of Cauchy principal
value integrals of oscillatory functions, Journal of
Computational and Applied Mathematics, 234(2010),95-100.

14



